
A Retrograde Approximation Algorithm for

One-Player Can’t Stop

James Glenn1, Haw-ren Fang2, and Clyde P. Kruskal2

1 Department of Computer Science
Loyola College in Maryland

4501 N Charles St. Baltimore, MD 21210, USA
jglenn@cs.loyola.edu

2 Department of Computer Science
University of Maryland

A.V. Williams Building, College Park, Maryland 20742, USA
{hrfang,kruskal}@cs.umd.edu

Abstract. A one-player, finite, probabilistic game with perfect informa-
tion can be presented as a bipartite graph. For one-player Can’t Stop, the
graph is cyclic and the challenge is to determine the game-theoretical val-
ues of the positions in the cycles. In this article we prove the existence
and uniqueness of the solution to one-player Can’t Stop, and give an
efficient approximation algorithm to solve it by incorporating Newton’s
method with retrograde analysis. We give results of applying this method
to small versions of one-player Can’t Stop.

1 Introduction

Retrograde analysis has been well developed and successfully applied to deter-
ministic, finite, two-player zero-sum games with perfect information, such as
Awari [2], checkers [3], and chess [4]. For some probabilistic games, such as
Yahtzee and Can’t Stop1, retrograde algorithms are less practical due to the
high complexity. Therefore, we studied the simplified one-player game instead.

A one-player probabilistic game can be represented as a bipartite graph,
in which one set of nodes corresponds to deterministic events while the other
corresponds to random events. For one-player Yahtzee, the graph representation
is acyclic, which simplifies algorithm design and allows the game to be solved
easily [1] [5]. In some games, the graph representation is cyclic, which causes
difficulty in designing a bottom-up retrograde algorithm. We are particularly
interested in one-player Can’t Stop, developed an approximation algorithm to
solve this game by incorporating Newton’s method with retrograde analysis, and
give results of applying the method to small versions of the game.

1 Can’t Stop was designed by Sid Sackson and marketed by Parker Brothers. It
is currently out of print but will be republished by Face 2 Face Games in
2006. The rules can be found at http://en.wikipedia.org/wiki/Can’t Stop and
http://www.boardgamegeek.com/game/41. Also see Appendix for a short descrip-
tion.

2 James Glenn, Haw-ren Fang, and Clyde P. Kruskal

The organization of this paper is as follows. Section 2 formulates the problem.
In Section 3 we prove that one-player Can’t Stop has a unique solution, and
give an efficient retrograde algorithm to solve it. Section 4 presents the indexing
scheme. Section 5 summarizes the results of the experimental tests. A conclusion
is given in Section 6. A short description of Can’t Stop game rules is given in
Appendix.

2 Problem Formulation

A one-player, finite and probabilistic game with perfect information can be rep-
resented as a directed, bipartite game graph G = (U, V, E), where U and V are
two disjoint sets of vertices and E is the set of edges. (An edge (x, y) must have
either x ∈ U and y ∈ V or x ∈ V and y ∈ U .) The graph may be cyclic. A
position is a vertex w ∈ U ∪ V .

In Yahtzee a turn consists of a dice roll followed by a move. In Can’t Stop a
turn consists of a sequence of partial turns, each of which is a dice roll followed
by a move. A roll position is a vertex u ∈ U . A move position is a vertex v ∈ V .

For each non-terminal roll position u, a dice roll is a random event. The
weight 0 < p((u, v)) ≤ 1 indicates the probability that the game in roll position
u will change into move position v. So,

∑

∀v with (u,v)∈E

p((u, v)) = 1.

A move (v, u) (from a move position to a roll position) is a deterministic choice.
A partial turn (u1, u2) (from roll position u1 to roll position u2) consists of a

dice roll followed by a move. It is represented by a pair of edges ((u1, v), (v, u2))
in G. A turn is a sequence of partial turns (u0, u1), (u1, u2), . . . , (uk−1, uk). As
noted above, in Yahtzee, a turn consists of exactly one partial turn, and in Can’t
Stop a turn may consist of many partial turns.

We associate each vertex with a number, as the expected cost (or penalty)
of playing the optimal strategy starting from that vertex. The information is
stored in a cost database, which is presented as a function f : (U ∪ V) → R.

The goal of one-player Can’t Stop is to play so as to minimize the expected
number of turns to finish the game. Therefore, f(u) is the expected number of
remaining turns to finish the game starting at roll position u, in optimal play.

The cost function f satisfies that for all non-terminal roll positions u ∈ U ,

f(u) = g(u) +
∑

∀v with (u,v)∈E

p((u, v))f(v), (1)

where g(u) is the step cost (or step penalty) at u.
In the game of one-player Can’t Stop, g(u) indicates whether it is the first

partial turn for a turn. More precisely,

g(u) =

{

1, if u is the starting position for a turn,
0, otherwise.

A Retrograde Approximation Algorithm for One-Player Can’t Stop 3

For the optimal playing strategy, we minimize the cost (or penalty)2. There-
fore, for all non-terminal move positions v ∈ V ,

f(v) = min
∀u with (v,u)∈E

f(u). (2)

For all positions w ∈ U ∪ V , f(w) is also called the position value of w.
A terminal vertex indicates the end of a game. We assume all terminal ver-

tices, denoted by z, are roll positions (in U) with f(z) = g(z). For one-player
Can’t Stop, a terminal vertex z is reached when the player completes three
columns, and therefore no additional rolling of dice is required (i.e., f(z) =
g(z) = 0).

A cost database f satisfying both conditions (1) and (2) is called a solution.
A game is solved if a solution is obtained. Unless otherwise noted, all the game
graphs in this paper stand for finite, one-player, probabilistic games with perfect
information.

v3 u2

g(u2) = 0

u3g(u3) = 0 v2 u1 g(u1) = 1

v1

1.00.5

0.5

Fig. 1. An example of game graph G = (U, V, E).

We illustrate an example in Figure 1, where g(u1) = 1, g(u2) = g(u3) = 0,
p((u1, v1)) = 1, and p((u2, v2)) = p((u2, v3)) = 0.5. This example simulates the
last stage of a game of one-player Can’t Stop. A turn begins at position u1. At
position u2, the first player has 50% probability to complete three columns, and
the other 50% probability to fall back to u1. By (1) and (2),

f(v1) = f(u2) =
1

2
f(v2) +

1

2
f(v3),

f(v2) = f(u1) = f(v1) + 1,

f(v3) = f(u3) = 0.

The unique solution is f(u1) = f(v2) = 2 and f(u2) = f(v1) = 1.
The problem of solving a one-player probabilistic game is formulated as

follows. Suppose we are given a game graph G = (U, V, E) of a one-player,
finite, probabilistic game with perfect information, and its step cost function
g : U → R. First, we investigate the existence and uniqueness of the solution

2 If the goal of a game is to maximize some value, we can multiply it by −1 and
minimize.

4 James Glenn, Haw-ren Fang, and Clyde P. Kruskal

(i.e., the cost database f : (U ∪ V) → R that satisfies both conditions (1) and
(2)). Second, we design an efficient algorithm to construct the cost database,
assuming a solution exists.

3 Retrograde Analysis for One-Player Probabilistic

Games

A retrograde algorithm typically consists of three phases: initialization phase,
propagation phase, and the final phase. In the initialization phase, the terminal
vertices are associated with their position values. In the propagation phase, the
information is propagated iteratively back to its predecessors until no propaga-
tion is possible. The final phase deals with the undetermined vertices.

Subsection 3.1 gives an algorithm to construct the cost database of an acyclic
game graph. In Subsection 3.2, we prove that one-player Can’t Stop has a unique
solution. In Subsection 3.3, we give an approximation algorithm to construct the
cost database for a game graph with cycles.

3.1 Game Graph is Acyclic

For games with acyclic game graphs, such as one-player Yahtzee, the bottom-up
propagation procedure is clear. Algorithm 1 gives the pseudocode to construct
the cost database for an acyclic game graph.

Consider Algorithm 1. Assuming all terminal vertices are in U , the set S2

is initially empty and (†) is not required. However, it is useful for the reduced
graph Ĝ in Algorithms 2 and 3. We call a vertex determined if its position value
is known. By (1) and (2), a non-terminal vertex cannot be determined until all
its children are determined. The sets S1 and S2 store all determined but not yet
propagated vertices. A vertex is removed from them after it is propagated. The
acyclic property ensures that all vertices are determined at the end of propaga-
tion phase. Therefore, a final phase is not required. The optimal playing strategy
is clear: given v ∈ V , always make the move (v, u) with the minimum f(u).

Note that in Algorithm 1, an edge (u, v) can be visited as many times as
the out-degree of u because of (*) and (**). The efficiency can be improved as
follows. We associate each vertex with a number of undetermined children, and
decrease the value by one whenever a child is determined. A vertex is determined
after the number is decreased down to zero. As a result, each edge is visited only
once and the algorithm is linear. This is called the children counting strategy. For
games like Yahtzee, the level of each vertex (the longest distance to the terminal
vertices) is known a priori. Therefore, we can compute the position values level
by level. Each edge is visited only once without counting the children.

Lemma 1. If a game graph is acyclic, its solution exists and is unique.

Proof. In an acyclic graph, the level for each vertex is well-defined. In Algo-
rithm 1, the position values are uniquely determined level by level. Hence the
solution exists and is unique. 2

A Retrograde Approximation Algorithm for One-Player Can’t Stop 5

Algorithm 1 Construct cost database f for acyclic game graph G = (U, V, E).

Require: G = (U, V, E) is acyclic.
Ensure: Program terminates with (1) and (2) satisfied. . Lemma 1
∀u ∈ U , f(u)← g(u), the step cost. . Initialization Phase
∀v ∈ V , f(v)←∞.
S1 ← {terminal positions in U}
S2 ← {terminal positions in V }
∀u ∈ S1 ∪ S2, set f(u) to be its value. . (†)
repeat . Propagation Phase

for all u ∈ S1 do

for all (v, u) ∈ E do

f(v)← min{f(v), f(u)}
if all children of v are determined then . (*)

S2 ← S2 ∪ {v}
end if

end for

end for

S1 ← ∅
for all v ∈ S2 do

for all (u, v) ∈ E do

f(u)← f(u) + p((u, v))f(v)
if all children of u are determined then . (**)

S1 ← S1 ∪ {u}
end if

end for

end for

S2 ← ∅
until S1 ∪ S2 = ∅

3.2 Game Graph is Cyclic

If a game graph is cyclic, a solution may not exist. Even if it exists, it may
not be unique. We give a condition under which a solution exists and is unique
in Lemma 2. The proof uses the Fixed Point Theorem3. With Lemma 2, we
prove that the game graph of one-player Can’t Stop has a unique solution in
Theorem 2.

Theorem 1 (Fixed Point Theorem). If a continuous function f : R −→ R

satisfies f(x) ∈ [a, b] for all x ∈ [a, b], then f has a fixed point in [a, b] (i.e.,
f(c) = c for some c ∈ [a, b]).

Lemma 2. A cyclic game graph G = (U, V, E) has a solution if,

1. For all u ∈ U , g(u) ≥ 0.
2. For each non-terminal vertex u, there is a path from u to a terminal vertex.
3. There exists some w ∈ U such that the graph is acyclic after removing the

outgoing edges of w.

3 See, for example, http://mathworld.wolfram.com/FixedPointTheorem.html.

6 James Glenn, Haw-ren Fang, and Clyde P. Kruskal

In addition, if the vertex w in condition 3 satisfies g(w) > 0, then the solution
is unique with all position values non-negative.

Proof. Let Ĝ = (U, V, Ê) be the graph obtained by removing all of the outgoing
edges from w in G (i.e., Ê = {(u, v) : (u ∈ U−{w})∧(v ∈ U∪V)∧((u, v) ∈ E)}).
By condition 3, Ĝ = (U, V, Ê) is acyclic. All the terminal vertices other than w

in Ĝ are also terminal in G. Let x be the estimated position value of w. We can
construct a database for Ĝ by Algorithm 1. However, we propagate in terms of
x (i.e., treat x as a variable during the propagation), though we know the value
of x. For example, assuming x = 6, we write min{ 1

2x, 1
3x+2} = 1

2x instead of 3.

We use f̂(x, y) to denote the position value of y ∈ U ∪ V of Ĝ in terms of x. At

the end of Algorithm 1, we compute f̂(x, w) with edges in E − Ê in terms of x

by (1). The values of f̂(x, y) for all y ∈ U ∪ V constitute a solution to G, if and

only if f̂(x, w) equals x in value. The main theme of this proof is to discuss the

existence and uniqueness of x satisfying f̂(x, w) = x.

Iteratively applying (1) and (2), all f̂(x, y) for y ∈ U∪V are in the form ax+b,

where 0 ≤ a ≤ 1. We are particularly concerned with f̂(x, w). Let f̂(x, w) =
a(x)x + b(x), where a(x) and b(x) are real functions of x. By (1) and (2), it is
not hard to see that a(x) is non-increasing, b(x) is non-decreasing, and both a(x)

and b(x) are piecewise constant. Hence f̂(x, w) is piecewise linear, continuous

and non-decreasing in terms of x. By condition 1, f̂(0, w) = b(0) ≥ g(w) ≥ 0.
By condition 2, a(x) < 1 for x large enough. Since a(x) is non-increasing and
a(x) < 1 for x large enough, f(x) < x for x large enough. By Theorem 1, there

exists x ≥ 0 such that f̂(x, w) = x.

By condition 1, f̂(0, w) ≥ g(w). Assuming g(w) > 0, then f̂(w, 0) > 0.

Moreover, f̂(x, w) = a(x)x + b(x) is piecewise linear and continuous with 0 ≤

a(x) ≤ 1 for x ∈ R. Therefore, x ≤ 0 implies f̂(w, x) > x. Let x0 > 0 be the

smallest solution to f̂(w, x) = x. Since f̂(w, 0) > 0 and a(x) is non-increasing,

a(x0) < 1 and therefore f̂(w, x) < x for x > x0. We conclude that the additional

condition g(w) > 0 guarantees the solution x0 > 0 to f̂(w, x) = x is unique.
Hence the game graph G has a unique solution with all position values non-
negative. 2

Consider the strongly connected components of the game graph of one-player
Can’t Stop. Each strongly connected component consists of all the positions with
a certain placement of the squares and various placement of the at most three
markers. The roll position with no marker is the anchor of the component. When
left without a legal move, the game goes back to the anchor, and results in a
cycle. The outgoing edges of each non-terminal component lead to the anchors
in the supporting components. The terminal components are those in which the
player has won three columns. Each terminal component has only one vertex
with position value 0.

Theorem 2. The game graph of one-player Can’t Stop has a unique solution.

A Retrograde Approximation Algorithm for One-Player Can’t Stop 7

Proof. The proof is by finite induction. We split the graph into strongly con-
nected components, and consider the components in bottom-up order.

Given a non-terminal component with the anchors in its supporting com-
ponents having position values non-negative and uniquely determined, we con-
sider the subgraph induced by the component and the anchors in its supporting
components. This subgraph satisfies all the conditions in Lemma 2, where the
terminal positions are the anchors in the supporting components. Therefore, it
has a unique solution with all position values non-negative. By induction, the
solution to the game graph of one-player Can’t Stop exists and is unique. 2

3.3 Retrograde Approximation Algorithms

If we apply Algorithm 1 to a game graph with cycles, then the vertices in the
cycles cannot be determined. A naive algorithm to solve the game is described
as follows. Given a cyclic game graph G = (U, V, E), we prune some edges so
the resulting Ĝ = (U, V, Ê) is acyclic, and then solve Ĝ by Algorithm 1. The
solution to Ĝ is treated as the initial estimation for G, denoted by a cost function
f̂ . We approximate the solution to G by recursively updating f̂ using (1) and

(2). If f̂ converges, it converges to a solution to G. The pseudocode is given in
Algorithm 2.

Algorithm 2 A naive algorithm to solve a cyclic game graph G = (U, V, E).

Ensure: If f̂ converges, it converges to a solution to G = (U, V, E).
Obtain an acyclic graph Ĝ = (U,V, Ê), where Ê ⊂ E. . Estimation Phase
Compute the solution f̂ to Ĝ by Algorithm 1. . (†)
Use f̂ as the initial guess for G.
S1 ← {terminal positions of Ĝ in U}
S2 ← {terminal positions of Ĝ in V }
repeat . Approximation Phase

for all u ∈ S1 do

for all (v, u) ∈ E do

f̂(v)← min
∀w with (v,w)∈E

f̂(w) . (*)

S2 ← S2 ∪ {v}
end for

end for

S1 ← ∅
for all v ∈ S2 do

for all (u, v) ∈ E do

f̂(u)← g(u) +
∑

∀w with (u,w)∈E
p((u,w))f̂(w) . (**)

S1 ← S1 ∪ {u}
end for

end for

S2 ← ∅
until f̂ converges.

8 James Glenn, Haw-ren Fang, and Clyde P. Kruskal

An example is illustrated by solving G = (U, V, E) in Figure 1. We remove
(u1, v1) to obtain the acyclic graph Ĝ. The newly terminal vertex is u1. Let

f̂(u1) = 1, which is a reasonable initial guess since f(u1) ≥ g(u1) = 1 in G.

The solution for Ĝ is f̂(u1) = f̂(v2) = 1 and f̂(u2) = f̂(v1) = 1
2 . The update

is repeated with f̂(u1) = 3
2 , 7

4 , . . . , 2n+1
−1

2n
, . . . , which converges to 2. Hence f̂

converges to the solution to G. Let en be the difference between f̂(u1) at the
nth step and the converged value; then en+1

en

= 1
2 . In other words, it converges

linearly.
Consider Algorithm 2. For one-player Can’t Stop, it is natural to prune the

outgoing edges of the anchors and obtain the acyclic Ĝ. In (†), we assign an
estimated value to each vertex terminal in Ĝ but not terminal in G (i.e., the
newly terminal positions). For efficiency, we do not have to recompute the whole
(*) and (**). Updating with the recent cost changes of the children is sufficient.

If the conditions in Lemma 2 are satisfied (e.g., a strongly connected compo-
nent of one-player Can’t Stop), Ĝ can be obtained by pruning the outgoing edges
of the anchor w. In this case, Algorithm 2 corresponds to the steepest descent
method without line search in numerical optimization, so linear convergence is
expected.

The proof of Lemma 2 reveals that if we solve f(x, w) = x using Newton’s
method4, then quadratic convergence can be expected. In other words, if we use
en to denote the difference between the estimation and the solution at the nth
step, en+1

e2
n

≈ c for some constant c when the estimate is close enough to the

solution5. An example is illustrated with the game graph in Figure 1 as follows.
We treat u1 as w in Lemma 2, and let x be the initial estimate of the position
value of u1. Then f̂(x, v2) = x, f̂(x, v1) = f̂(x, u2) = 1

2x, and f̂(x, u1) = 1
2x + 1.

Solving 1
2x + 1 = x, we obtain x = 2, which is the exact position value of

u2. In this small example we obtain the solution by one iteration. In practice,
multiple iterations are expected to reach the solution. The pseudocode is given
in Algorithm 3.

Consider Algorithm 3. In the estimation phase, the better the initial estimate
of position value of w (denoted by x), the fewer steps are needed to reach the
solution.

4 Indexing Scheme

In practice, a game graph G = (U, V, E) can be too big to fit in physical mem-
ory. For one-player Can’t Stop, we partition the graph into strongly connected
components. Before constructing a cost database for a component, we have all
its supporting databases constructed. The construction is in bottom-up order,
until the game is solved.

4 See, for example, http://mathworld.wolfram.com/NewtonsMethod.html.
5 In our case f̂(x,w) is piecewise linear. Hence Newton’s method can reach the solution

in a finite number of steps. In practice, however, rounding errors may create minor
inaccuracy.

A Retrograde Approximation Algorithm for One-Player Can’t Stop 9

Algorithm 3 An efficient algorithm to solve a game graph with one anchor.

Require: G = (U, V, E) satisfies the conditions in Lemma 2.
Ensure: f̂ converges to a solution to G in the rate of Newton’s method.

Let x denote the estimate for position value of w in Lemma 2. . Estimation Phase
Obtain the acyclic graph Ĝ = (U,V, Ê) by removing the outgoing edges of w.
repeat . Approximation Phase

Solve Ĝ (in terms of x) with the current estimate x for w by Algorithm 1.
Compute f̂(x,w) with E − Ê by (1) in terms of x. Denote the result by ax + b.
x← b

1−a
. . (The solution to ax + b = x is x = b

1−a
.)

until f̂(x, w) = x in value.

4.1 Indexing Scheme for Can’t Stop

Consider one-player Can’t Stop. Let xi denote the number of steps from the
square to the top at column ‘i’. Each strongly connected component of the game
graph consists of all the positions with some particular (x2, x3, . . . , x12), where
0 ≤ xi ≤ 2i − 1 for i = 2, 3, . . . , 7 and 0 ≤ xi ≤ 27 − 2i for i = 7, 8, . . . , 12 and
at most three of the xi are zero. (x′

2, x
′
3, . . . , x

′
12) is a supporting component of

(x2, x3, . . . , x12) if and only if x′
i ≤ xi for i = 2, 3, . . . , 12 and (x′

2, x
′
3, . . . , x

′
12) 6=

(x2, x3, . . . , x12).
A terminal component has three zero squares, and contains only one position

in the game graph G (win three columns, the end of a game). Each position in a
non-terminal component (x2, x3, . . . , x12) is (y2, y3, . . . , y12) where each yi ≤ xi

and for at most three i, yi < xi. All positions are indexed using

12
∑

c=2

yc

c−1
∏

d=2

l(d)

as a hash value, where l(d) denotes the length of column d. When the cost
database cannot fit in main memory, it is possible to reorder the columns (e.g.,
consider a position to be (x2, x12, x3, x11, . . .) if that provides for better access
patterns). The cost databases for the anchor positions and the non-anchor po-
sitions are maintained separately, since the position values of the non-anchor
positions in a component are used only when computing the position value for
the anchor in that component.

In practice, we discard the cost database for the non-anchor positions and
reconstruct them using the cost database for the anchor positions as necessary (as
when simulating perfect play). If storage is abundant and speed is important, it
would also be possible to use a file named x2x3 . . . x12.ijk to store all the position
values, where i < j < k are the columns where xi 6= yi, xj 6= yj, and xk 6= yk.
The offset of a position would be yi + yjxi + ykxixj in the file. The naming and
indexing convention is the same for positions with two markers or fewer. The cost
database for component (x2, x3, . . . , x12) consists of all files x2x3 . . . x12∗. The
largest component is (3, 5, 7, 9, 11, 13, 11, 9, 7, 5, 3), which contains the position
of the beginning of the game.

10 James Glenn, Haw-ren Fang, and Clyde P. Kruskal

4.2 Algorithms

When the game graph is split, we can construct the cost databases component-
by-component in the bottom-up order. Algorithm 2 is applied to the subgraph
consisting of the component, its outgoing edges, and the positions that the outgo-
ing edges connect to. For each supporting component, there is only one position
the parent component connects to, the anchor (i.e., the position with no mark-
ers). In Algorithm 2, we may propagate the information from the supporting
databases to the component, so the supporting databases are not required in the
propagation phase.

5 Experiments

As proof of concept, we have solved simple versions of one-player Can’t Stop.
These simpler versions use 3-, 4-, and 5-sided dice instead of 6-sided dice and
may have shorter columns than the official version. Let (n, k) Can’t Stop denote
the one-player game played with four n-sided dice with the shortest column k

spaces long. Columns 2 and 2n are the shortest columns and column n + 1 is
the longest. Adjacent columns always differ in length by 2 spaces. The official
version is then (6, 3) Can’t Stop.

For n = 2, 3, 4 and k = 1, 2, 3 (and also n = 5, k = 1) we have implemented
Algorithm 3 in Java and solved (n, k) Can’t Stop. We used an initial estimate of
1.0 for the position value of each vertex. Table 1 shows, for each version of the
game, the size of the game graph, the time it took the computer to solve the game,
and the average number of turns needed to win the game when using the optimal
strategy. The size of the game graph is given as the number of anchor vertices
(i.e., vertices representing the beginning of a turn with no markers placed), and
the total number of vertices in all of the anchor vertices’ strongly connected
components (which includes vertices representing the middle of a turn when the
markers have been placed on the board). Symmetry allows us to ignore about
half of the anchor vertices in our implementation since the position represented
by (x2, x3, . . . , x12) is equivalent to (x12, x11, . . . , x2).

Note that for fixed n, the time to solve the game is roughly proportional to
the number of vertices. When n increases there is also an additional cost due to
the increased number of outgoing edges from each vertex in U . For n = 3 there
are 15 neighbors of each vertex (representing the 15 different outcomes of rolling
four 3-sided dice); for n = 4 there are 35 neighbors.

The average position value also affects the running time. For larger values of k

or n, the average position value is higher; higher position values will require more
iterations in Algorithm 3 to converge. Table 2 shows the number of iterations
required for convergence when solving (4, 3) Can’t Stop.

6 Conclusion

We used a bipartite graph to abstract a one-player probabilistic game with the
goal to maximize some expected game value or to minimize the expected cost.

A Retrograde Approximation Algorithm for One-Player Can’t Stop 11

Table 1. Results of solving simple versions of Can’t Stop.

(n, k) Anchor vertices Total vertices Time Optimal Turns

(2, 1) 15 225 0.166s 1.298
(2, 2) 44 1,936 0.405s 1.347
(2, 3) 95 9,025 0.601s 1.400
(3, 1) 308 64,372 1.70s 1.480
(3, 2) 1,432 787,600 5.05s 1.722
(3, 3) 4,378 4,934,006 23.3s 1.890
(4, 1) 12,913 20,802,843 4m50s 2.187
(4, 2) 83,456 289,091,584 58m50s 2.454
(4, 3) 333,069 2,104,663,011 6h7m 2.700
(5, 1) 921,174 7,105,015,062 2d20h 2.791

Table 2. For Can’t Stop (4, 3), # of iterations required for ranges of position values.

Position Value States Mean Iter. Position Value States Mean Iter.

1.0 - 1.1 50,044 3.31 1.9 - 2.0 6,326 8.27
1.1 - 1.2 21,147 3.41 2.0 - 2.1 8,096 8.32
1.2 - 1.3 8,842 3.73 2.1 - 2.2 8,797 8.61
1.3 - 1.4 13,535 4.32 2.2 - 2.3 7,598 8.90
1.4 - 1.5 9,617 5.00 2.3 - 2.4 5,210 9.18
1.5 - 1.6 5,829 5.88 2.4 - 2.5 2,574 9.43
1.6 - 1.7 3,524 6.70 2.5 - 2.6 684 9.61
1.7 - 1.8 3,157 7.51 2.6 - 2.7 75 9.76
1.8 - 1.9 4,321 8.10 Total 159,376 5.13

We investigated the game of one-player Can’t Stop, and proved that its opti-
mal solution exists and is unique. To obtain the optimal solution, we developed
a new approximation algorithm that converges quadratically, by incorporating
Newton’s method with retrograde analysis.

We successfully constructed the databases of the simplified models with 3-
sided and 4-sided dice. The optimal solution of one-player Can’t Stop can be
used as the approximate solution of two-player Can’t Stop. Two-player Can’t
Stop can be presented as a four-partite graph. Given a position, a function f

is defined as the probability that the first player wins the game. The goal is to
build a database representing f . In addition to building the optimal databases
of one-player Can’t Stop, we plan to tackle two-player Can’t Stop in the future.

12 James Glenn, Haw-ren Fang, and Clyde P. Kruskal

7 Acknowledgements

The authors thank David Slater for pointing out that the algorithm can be
improved by taking advantage of symmetry.

References

1. J. Glenn. An optimal strategy for Yahtzee. Technical Report CS-TR-0002, Loyola
College in Maryland, 4501 N. Charles St, Baltimore MD 21210, USA, May 2006.

2. J.W. Romein and H.E. Bal. Solving the game of awari using parallel retrograde
analysis. IEEE Computer, 36(10):26–33, October 2003.

3. J. Schaeffer, Y. Björnsson, N. Burch, R. Lake, P. Lu, and S. Sutphen. Building
the checkers 10-piece endgame databases. In H.J. van den Herik, H. Iida, and E.A.
Heinz, editors, Advances in Computer Games 10. Many Games, Many Challenges,
pages 193–210. Kluwer Academic Publishers, Boston, USA, 2004.

4. K. Thompson. 6-piece endgames. ICCA Journal, 19(4):215–226, 1996.
5. P. Woodward. Yahtzee: The solution. Chance, 16(1):18–22, 2003.

Appendix: Can’t Stop Rules

We summarize the game rules of Can’t Stop, largely taken from Wikipedia6:
The game equipment consists of four dice, a board, a set of eleven markers for
each player, and three neutral markers. The board consists of eleven columns
of spaces, one column for each of the numbers 2 through 12. The columns (re-
spectively) have 3, 5, 7, 9, 11, 13, 11, 9, 7, 5 and 3 spaces each. The object of
the game is to move your markers up the columns, and be the first player to
complete three columns.

On a player’s turn he7 rolls all four dice. He then divides the four dice into
two pairs, each of which has an associated total. (For example, if he rolled 1 - 3 -
3 - 4 he could make a 4 and a 7, or a 5 and a 6.) If the neutral markers are off of
the board then they are brought on to the board on the columns that correspond
to these totals. If the neutral markers are already on the board in one or both of
these columns then they are advanced one space upward. If the neutral markers
are on the board, but only in columns that cannot be made with any pair of the
current four dice, then the turn is over and the player gains nothing.

After moving the markers the player chooses whether or not to roll again. If
he stops, then he puts markers of his color in the locations of the current neutral
markers. If on a later turn he restarts this column, he starts building from the
place he previously claimed. If he does not stop then he must be able to advance
at least one of the neutral markers on his next roll, or all progress on this turn
is lost.

When a player reaches the top space of a column, that column is won, and
no further play in that column is allowed. The first player to complete three
columns wins the game.

6 http://en.wikipedia.org/wiki/Can’t Stop
7 We use ‘he’ when both ‘she’ and ‘he’ are possible.

