A Retrograde Approximation Algorithm for
Two-Player Can’t Stop

James Glenn', Haw-ren Fang?, and Clyde P. Kruskal®

! Department of Computer Science
Loyola College in Maryland
4501 N Charles St., Baltimore, Maryland 21210, USA
jglenn@cs.loyola.edu
2 Department of Computer Science and Engineering
University of Minnesota
200 Union St. S.E., Minneapolis, Minnesota, 55455, USA
hrfang@cs.umn.edu
3 Department of Computer Science
University of Maryland
A.V. Williams Building, College Park, Maryland 20742, USA
kruskal@cs.umd.edu

Abstract. A two-player, finite, probabilistic game with perfect informa-
tion can be presented as a four-partite graph. For Can’t Stop, the graph
is cyclic and the challenge is to determine the game-theoretical values
of the positions in the cycles. In a previous paper we have presented
our success on tackling one-player Can’t Stop. In this paper we prove
the existence and uniqueness of the solution to two-player Can’t Stop,
and present a retrograde approximation algorithm to solve it by incor-
porating the 2-dimensional Newton’s method with retrograde analysis.
We give results of small versions of two-player Can’t Stop.

1 Introduction

Retrograde analysis has been well developed for deterministic and two-player
zero-sum games with perfect information, and successfully applied to construct
endgame databases of checkers [7,9], chess [10,11], and Chinese chess [1,2, 13].
It also played a crucial role in solving Nine Men’s Morris [3] and Kalah [6]. A
recent success of parallel retrograde analysis was solving Awari [8].

On the other hand, retrograde analysis for probabilistic games is currently
under-explored. Glenn [4] and Woodward [12] solved one-player Yahtzee. We pre-
sented our success on tackling one-player Can’t Stop!, by incorporating Newton’s
method into a retrograde algorithm run on a bipartite graph representing the
game [5].

! Can’t Stop was designed by Sid Sackson and marketed first by
Parker Brothers and now by Face 2 Face Games. The rules
can be found at http://en.wikipedia.org/wiki/Can’t_Stop and
http://wuw.boardgamegeek.com/game/41.

A two-player probabilistic game can be represented as a four-partite graph
G = (U, V,U,V,E), where U/U correspond to random events and V/V cor-
respond to deterministic events of the first/second players, respectively. For
Yahtzee, the graph representation is acyclic that simplifies algorithm design. In
some games, such as Can’t Stop, the graph representation is cyclic, which causes
difficulty in designing a bottom-up retrograde algorithm. In this article we gen-
eralize our retrograde approximation algorithm for one-player Can’t Stop by
incorporating the 2-dimensional Newton’s method into a retrograde algorithm.

The organization of this paper is as follows. Section 2 formulates the prob-
lem. Section 3 proves that two-player Can’t Stop has a unique solution, and
gives a retrograde algorithm to solve it. Section 4 presents the indexing scheme.
Section 5 summarizes the results of the experimental tests. A conclusion is given
in Section 6.

2 Problem Formulation

A two-player probabilistic game can be presented as a four-partite graph G =
(U, V,U,V,E), where EC (U x V)U (U x V)U((VUV) x (UUU)). Edges in
U x V and U x V represent the random events (e.g., dice rolls), and edges in
V x (UUU) and V x (UUU) represent the deterministic events (i.e., the moves),
by the first and second players, respectively. We also call vertices in U U U roll
positions and vertices in V UV mowve positions. A terminal vertex indicates the
end of a game. Without loss of generality, we assume all terminal vertices are
roll positions (i.e., in U U U).

A partial turn (u1,us) (from roll position u; to roll position ug) consists
of a random event followed by a move. It is represented by a pair of edges
((u1,v), (v,u2)) in G. A sequence of partial turns (ug, u1), (w1, ua), ..., (Uk—1,uk)
is called a turn. In Can’t Stop, a turn may consist of many partial turns. In
Yahtzee a turn consists of exactly one partial turn, and hence E C (U x V) U
(VxU)U (U xV)u(V xU).

We associate each position with a real number representing the expected
game score that the first player achieves in optimal play, denoted by a function
f:UUUUVUV — R. For two-player Can’t Stop, f(u) indicates the probability
that the first player will win the game. Since the games we consider are zero-
sum, the probability that the second player wins is 1 — f(u). For any terminal
position z € U U U, f(z) = 1 if the first player wins, and f(z) = 0 if the first
player loses. For two-player Yahtzee, a game may end in a draw. In this case we
can set f(z) = 0.5. However, it depends on the goal of the two players. If the
goal of the first player is either to win or to draw the game, we set f(z) =1 for
draw positions. Assuming the zero-sum property holds, the goal of the second
player is to win the game. On the other hand, if a draw means nothing different
from a loss to the first player, we set f(z) = 0 for draw positions.

For each non-terminal roll position v € U U U, the weight 0 < p((u,v)) < 1
indicates the probability that the game in w will change into move position v.

Therefore,
> p((u,v)) = 1.

vo With (u,v)eE

Recall that f(u) is the expected score that the first player achieves. For each
non-terminal roll position u € U U U,

fu) = > p((u,v)) f(v)- (1)
vo With (u,v)eE

In optimal play, the first player maximizes f whereas the second player min-
imizes f. Therefore, for all non-terminal move positions v € VUV,

_ Jmax{f(u): (v,u) € E}ifveV,
Jv) = {min{f(u) :(v,u) e B} ifveV. (2)

For all positions w € UUU UV UV, f(w) is also called the position value of w.

A database f satisfying both conditions (1) and (2) is called a solution. A
game is solved if a solution is obtained. Unless otherwise noted, all the game
graphs in this paper represent finite, zero-sum, two-player, probabilistic games
with perfect information, abstracted as above.

?«—05 f
+ 4@
B b

Fig. 1. An example of two-player game graph G = (U, V,U,V,E).

l@

We illustrate an example in Figure 1, where uy,us € U, v1,v2 € V, 41,13 €
U, and 01,05 € V. The two terminal vertices are us and s with f(us) = 1 and
f(@2) = 0, respectively. This example simulates the last stage of a game of two-
player Can’t Stop. At position u1, the first player has 50% chance of winning the
game immediately, and a 50% chance of being unable to advance and therefore
making no progress at this turn. The second player is in the same situation at
position @;. By (1) and (2),

f(ul)z%f(1) + %f(vz) f(v1) = f(ar), f(v2) = f(u2) =
f(ar) (01) + 5f(02), f(01) = f(ur), [f(v2)= f(t2)

The unique solution is f(u1) = f(71) = 2 and f(u2) = f(v2) = 3.
The problem of solving a two-player probabilistic game is formulated as fol-
lows. Suppose we are given a game graph G = (U,V,U,V, FE) with function

~—

values of the terminal vertices well-defined. First, we investigate the existence
and uniqueness of the solution. Second, we design an efficient algorithm to con-
struct the database f, assuming a solution exists.

3 Retrograde Analysis for Two-Player Probabilistic
Games

A retrograde algorithm typically consists of three phases: initialization phase,
propagation phase, and the final phase. In the initialization phase, the terminal
vertices are associated with their position values. In the propagation phase, the
information is propagated iteratively back to its predecessors until no propaga-
tion is possible. The final phase deals with the undetermined vertices.

Subsection 3.1 gives an algorithm to construct the database of an acyclic
game graph. In Subsection 3.2 we prove that two-player Can’t Stop has a unique
solution. In Subsection 3.3 we develop an algorithm to construct the database
for a game graph with cycles.

3.1 Game Graph is Acyclic

For games with acyclic game graphs, such as two-player Yahtzee, the bottom-up
propagation procedure is clear. Algorithm 1 gives the pseudocode to construct
the database for an acyclic game graph. It can also be applied to constructing
the perfect Backgammon bear-off databases with no piece on the bar?.

Consider Algorithm 1. Assuming all terminal vertices are in U U U, the set
Sy is initially empty and () is not required. However, it is useful for the reduced
graph Gin Algorithms 2 and 3. We say a vertex is determined if its position value
is known. By (1) and (2), a non-terminal vertex cannot be determined until all
its children are determined. The sets S; and S5 store all determined but not
yet propagated vertices. A vertex is removed from them after it is propagated.
The optimal playing strategy is clear: given v € V| always make the move (v, u)
with the maximum f(u). For o € V, we make the move (o, @) with the minimum
f(@). The proof of Lemma 1 reveals that the acyclic property ensures all vertices
are determined at the end of propagation phase. Therefore, a final phase is not
required.

Lemma 1. If a game graph is acyclic, its solution exists and is unique.

Proof. In an acyclic graph, the level (the longest distance to the terminal ver-
tices) for each vertex is well-defined. In Algorithm 1, the position values are
uniquely determined level by level. Hence the solution exists and is unique. O

2 To save constructing time and database space, we may use the optimal solution of
the simplified one-player game for the approximate Backgammon bear-off databases
with no piece on the bar.

Algorithm 1 Construct database f for an acyclic game graph.

Require: G = (U,V,U,V,E) is acyclic.

Ensure: Program terminates with (1) and (2) satisfied. > Lemma 1
Yue UUU, f(u) « 0. > Initialization Phase
Yo €V, f(v) « —oo, Vv €V, f(v) + oo.

S1 « {terminal positions in U U U}
S « {terminal positions in V UV} > (1)
Yu € S1 U Sz, set f(u) to be its value.
repeat > Propagation Phase
for all u € Sy and (v,u) € E do
if v € V then
F(v) — max{f(v), f(u)}
elsefv € V]
F(v) — min{f(v), f(u)}
end if
if all children of v are determined then > (%)
Sy — Sy U {v}
end if
end for
S1—0
for all v € S3 and (u,v) € E do
F(u) — Fw) +p((u,)) f (o)
if all children of u are determined then > (*%)
S1— S1U{u}
end if
end for
Sy — 0
until S; USy; =0

Note that in Algorithm 1, an edge (u,v) can be visited as many times as
the out-degree of u because of (*) and (**). The efficiency can be improved as
follows. We associate each vertex with a number of undetermined children, and
decrease the value by one whenever a child is determined. A vertex is determined
after the number is decreased down to zero. As a result, each edge is visited only
once and the algorithm is linear. This is called the children counting strategy. For
games like Yahtzee, the level of each vertex, the longest distance to the terminal
vertices, is known a priori. Therefore, we can compute the position values level
by level. Each edge is visited only once without counting the children.

3.2 Game Graph is Cyclic

If a game graph is cyclic, a solution may not exist. Even if it exists, it may
not be unique. We give a condition under which a solution exists and is unique
in Lemma 2. The proof uses the Fixed Point Theorem®. With Lemma 2, we

3 See, e.g., http://mathworld.wolfram.com/FixedPointTheorem.html.

prove that the game graph of two-player Can’t Stop has a unique solution in
Theorem 2.

Theorem 1 (Fixed Point Theorem). If a continuous function f : R — R
satisfies f(x) € [a,b] for all x € [a,b], then f has a fized point in [a,b] (i.e.,
f(c) = ¢ for some c € [a,b]).

Lemma 2. Given a cyclic two-player game graph G = (U,V,U,V, E), we use
G1 and Gy to denote the two subgraphs of G induced by U UV and U UV,

respectively. G has a solution with all position values in [0,1] if,

1. The graphs G1 and G2 are acyclic.

2. There exist wy € U and wy € U such that all edges from G1 to Go end at
wa, and all edges from Gy to Gy end at wy. In other words, EN (V x U) C
V x {we} and EN(V xU) CV x {w;}.

3. All the terminal position values are in [0,1].

In addition, if there is a path in Gy from wy to a terminal vertex z € UUV with
position value f(z) =1, then the solution has all position values in [0,1] and is
unique.

Proof. Let Gy = (U U {wy},V,E;) and Gy = (T U {w1},V, E3) be the induced
bipartite subgraphs of G. By condition 1, G1 and Gy are acyclic. Consider Gi.
All the terminal vertices in G other than weq are also terminal in G. If we know
the position value of wo, then by Lemma 1 the solution to G1 can be uniquely
determined. Let y be the estimated position value of ws. We can construct
a database for Gy by Algorithm 1. Denote by fi(y,w) the position value of
w € UUV that depends on y. Likewise, given x as the estimated position value
of wy, we denote by fg(x w) the position value of @w € U U V. The values of
fily,w) for w e UUV and fy(z, ,w) for w € U UV constitute a solution to G,
if and only if f1(y,w1) = 0 and fo(z,wy) = 0. The main theme of this proof is
to discuss the existence and uniqueness of z and y satisfying fl(y, wy) = x and
fa(z,we) =y, or equivalently fo(f1(y,w1),ws) =y.

Condition 3 states that all terminal position values are in [0, 1]. Tteratively
applying (1) and (2), f2(f1(0,w1),w2) > 0 and f2(f1(1,w1),ws) < 1. By The-
orem 1, there exists y* € [0,1] such that fao(fi(y*, w1),ws) = y*. Iteratively
applying (1) and (2) again, the position values of w € UUV/, fi (y*,w), are all in
[0,1]. Likewise, the position values of w € U UV, fo(z*,), are also all in [0, 1],
where z* = f) (y*, w1).

Now we investigate the uniqueness of the solution. Consider Gl, whose so-
lution can be obtained by propagation that depends on y, the position value of
wsy. For convenience of discussion, we propagate in terms of y (i.e., treat y as
a variable during the propagation), even though we know the value of y For
example, assuming y = %, we write rnax{3y, v+ 6} = 3y instead of CIt-
eratively applying (1) and (2), all propagated values of w € U UV are 1n the
form ay+b, which represents the local function values of f1 (y,). By condition 3,

0 < a+b < 1 with a, b nonnegative. We are particularly concerned with fy (y, w1).
Analysis above shows that fl (y,w1) in value is piecewise linear, continuous and
non-decreasing with the slope of each line segment in [0,1], and so is fa(z, ws)
by a similar discussion. These properties are inherited by the composite function
fg(fl (y,w1),ws2). The additional condition, the existence of a path in Gy from
w1 to a terminal position with position value 1 further ensures each line segment
ay + b of fi(y,w1) has the slope a < 1. Hence the slope of each line segment
of fg(fr (y,w1),ws) is also less than 1. This guarantees the uniqueness of the
solution in [0,1] to fo(f1(y, w1), ws) = y. O

Consider the strongly connected components of the game graph of two-player
Can’t Stop. Each strongly connected component consists of all the positions with
a certain placement of the squares and various placement of the at most three
markers for each player. The two roll positions with no marker are the anchors
of the component. In one of them it is the turn of the first player, whereas in
the other it is the second player to move. When left without a legal move, the
game goes back to one of the two anchors, and results in a cycle. The outgoing
edges of each non-terminal component lead to the anchors in the supporting
components. The terminal components are those in which some player has won
three columns. Each terminal component has only one vertex with position value
1 (if the first player wins) or 0 (if the second player wins).

Theorem 2. The game graph of two-player Can’t Stop has a unique solution,
where all the position values are in [0, 1].

Proof. The proof is by finite induction. We split the graph into strongly con-
nected components, and consider the components in bottom-up order.

Given a non-terminal component with the anchors in its supporting com-
ponents having position values uniquely determined in [0, 1], we consider the
subgraph induced by the component and the anchors in its supporting compo-
nents. This subgraph satisfies all conditions in Lemma 2, where the terminal
positions are the anchors in the supporting components. Therefore, it has a
unique solution with all position values in [0, 1]. By induction, the solution to
the game graph of two-player Can’t Stop exists and is unique. O

3.3 Retrograde Approximation Algorithms

If we apply Algorithm 1 to a game graph with cycles, then the vertices in the
cycles cannot be determined. A naive algorithm to solve the game is described
as follows. Given a cyclic game graph G = (U, V, U,V,E), we prune some edges
so the resulting G (U,V,U,V,E) is acyclic, and then solve G by Algorithm 1.
The solution to G is treated as the initial estimation for G, denoted by function
f We approx1mate the solution to G by recursively updating f using (1) and
(2). If f converges, it converges to a solution to G. The pseudocode is given in
Algorithm 2.

An example is illustrated by solving G = (U,V,U,V,E) in Figure 1. We
remove (v1, 1) to obtain the acyclic graph G, and initialize the newly terminal

Algorithm 2 A naive algorithm to solve a cyclic game graph.

Ensure: If f converges, it converges to a solution to G = (U,V, U,V E).
Obtain an acyclic graph G= (U,v,U0,V, E), where E C E. > Estimation Phase
Compute the solution f to G by Algorithm 1. > (1)
Use f as the initial guess for G.
S; « {terminal positions of G in U U U}
Sy « {terminal positions of G in V UV}

repeat > Approximation Phase

for all u € Sy and (v,u) € E do
P max{f(w): (v,w) € E} ifv eV, %
f(v)b{min{f(w):(v,w)GE} ifveV. > ()
Sy — Sy U {v}

end for

S1 0

for all v € 52 and (u,v) € £ do R
Fw) = 9(0) + X with (e P w)) fw) > (%)
S1 +— S U {u}

end for

So — 0

until f converges.

vertex u; with position value 0. The solution for G has f(u;) = 1. The update
5 21 1,141

81320 12716 4r v

f converges to the solution to G. Let e,, be the difference between f(u1) at the

nth step and the converged value; then EZA = 1. Hence it converges linearly.

. 4

Consider Algorithm 2. For two-player Can’t Stop, it is natural to prune the
outgoing edges of the anchors and obtain the acyclic G. In (1), we assign an
estimated value to each vertex terminal in G but not terminal in G (i.e., the
newly terminal positions). For efficiency, we do not have to recompute the whole
(*) and (**). Updating with the recent changes of the children is sufficient.

If the conditions in Lemma 2 are satisfied (e.g., a strongly connected com-
ponent of two-player Can’t Stop), G can be obtained by pruning the outgoing
edges of the two anchors wy and ws.

The proof of Lemma 2 reveals that if we solve fl (y,w1) = z and fg(ac, wa) =y
using the 2-dimensional Newton’s method*, then quadratic convergence can be
expected. In other words, if we use e, to denote the difference between the
estimation and the solution at the nth step, 2 ~ ¢ for some constant ¢ when
the estimate is close enough to the solution®. An example is illustrated with the
game graph in Figure 1 as follows. We treat u; as w; and %1 as we in Lemma 2,
and let x and y be the initial estimate of the position values of u; and @,

is repeated with f(ul) = ,--., which converges to % Hence

4 See, e.g., http://www.math.gatech.edu/Earlen/2507/notes/NewtonMethod . html.

® In our case f (z,w) is piecewise linear. Hence Newton’s method can reach the solution
in a finite number of steps. In practice, however, rounding errors may create minor
inaccuracy.

respectively. Then fi(y,u;) = sy + 3, fo(z,a1) = . Solving 1y + 4 = x and
%x = y, we obtain x = % and y = %, which are the exact position values of
uy and w7y, respectively. In this small example we obtain the solution by one
iteration. In practice, multiple iterations are expected to reach the solution. The

pseudocode is given in Algorithm 3.

Algorithm 3 An efficient algorithm to solve a cyclic game graph.

Require: G = (U,V,U,V, E) satisfies the conditions in Lemma 2.

Ensure: fl and fg converge to a solution to G in the rate of Newton’s method.
{Estimation Phase:}
Denote the induced subgraphs G1 = (U U {ws},V, E1) and Go = (U U {w1 }, V, E»).
Assuming the conditions in Lemma 2 hold, Gl and Gg are acyclic and F1 U Es = E.
Estimate the position values of anchors wi € U and ws € U, denoted by x and y.
{Approximation Phase:}

repeat
Solve G in terms of the current estimate y for ws by Algorithm 1. > (%)
Denote the linear segment of fi (y,w1) by a1y + bi1.
Solve (s in terms of the current estimate z for w1 by Algorithm 1. > (**)

Denote the linear segment of fg (z,w2) by a2z + ba.
Solve x = a1y + b1 and y = a2z + b2 for the next estimates x and y.
until the values of z and y cannot be longer unchanged.

Consider Algorithm 3. In the estimation phase, the better the initial esti-
mated position values of wq and wy (denoted by = and y respectively), the fewer
steps are needed to reach the solution. In the approximation phase, the graphs
Gy and G are disjoint except w; and ws, and the propagations in (*) and (**) in
each iteration are independent of each other. Therefore, Algorithm 3 is natively
parallel on two processors, by separating the computations (*) and (**).

A more general model is that a game graph G has two anchors wq, w2 (i.e.,
removing the outgoing edges of w; and ws results in an acyclic graph), but the
precondition in Lemma 2 does not hold. In this model the incorporation of 2-
dimensional Newton’s method is still possible as follows. Let z and y be the
current estimated position values of w; and ws at each iteration, respectively.
The propagated values of w; and we in terms of z and y (e.g., if z = % and
y = 2, we write min{z + 1y, %:C + %y} = %:C + %y instead of 5) are denoted
by f(:z:, y,w) and f(x,y, ws). We solve the linear system of f(x,y, wy) = x and
f(ac,y,wg) = y for x and y as the position values of w; and ws in the next
iteration. Three observations are worth noting. First, since the precondition in
Lemma 2 does not hold, existence and uniqueness of the solution requires further
investigation. Second, the algorithm is not natively parallel on two processors as
stated above. Third, this generalization relies on the property of two anchors,
not two players. It also applies to a one-player probabilistic game graph with
two anchors.

4 Indexing Scheme

We use two different indexing schemes for Can’t Stop positions, one scheme
for anchors and another for non-anchors. The indexing scheme for non-anchor
positions is designed so that, given an index we can quickly compute the positions
of all of the markers, and vice versa. It is a mixed radix system in which there
is a digit for each player and column representing the position of that player’s
marker in the column; this scheme is similar to that used for one-player Can’t
Stop [5]. A different scheme is used for anchors so that we can store the position
value database in a compact form.

In the variant used in our experiments, an anchor (xa, ..., T12,Y2, ..., Y12, 1)
is illegal if z; = y; # 0 for some i (players’ markers cannot occupy the same
location with a column). With this restriction many indices map to illegal an-
chors. Furthermore, once a column is closed, the locations of the markers in that
column are irrelevant; only which player won matters. For example, if yo = 3
then we can set z2 = 0 and the resulting position represents the position where
x2 € {1,2} as well. If the position values are stored in an array indexed using the
mixed radix system as for non-anchors, then the array would be sparse: for the
official game about 98% of the entries would be wasted on illegal and equivalent
indices.

In order to avoid wasting space in the array and to avoid the structural
overhead needed for more advanced data structures, a different indexing scheme
is used that results in fewer indices mapping to illegal, unreachable, or equivalent
positions.

Write each position as ((x2,¥2),..., (Z12,y12),t). Associate with each pair
(x;,9;) an index z; corresponding to its position on a list of the legal pairs of
locations in column 7 (that is, on a list of ordered pairs (z,y) such that x # y).
The z; and t are then used as digits in a mixed radix system to obtain the index

12 c—1
t+ >z 2] B+ 1a(la — 1))
c=2 d=2

where [4 is the length of column d and the term in the product is the number
of legal, distinct pairs of locations in column d. The list of ordered pairs used
to define the z;’s can be constructed so that if component u is a supporting
component of v then the indices of u’s anchors are greater than the indices of
v’s and therefore we may iterate through the components in order of decreasing
index to avoid counting children while computing the solution.

There is still redundancy in this scheme: when multiple columns are closed,
what is important is which columns have been closed and the total number
of columns won by each player, but not which player has won which columns.
Before executing Algorithm 1 on a component, we check whether an equivalent
component has already been solved. We deal with symmetric positions in the
same way.

5 Experiments

As proof of concept, we have solved simplified versions of two-player Can’t Stop.
The simplified games use dice with fewer than six sides and may have shorter
columns than the official version. Let (n,k) Can’t Stop denote the two-player
game played with n-sided dice and columns of length &k, k+2, ..., k+2(n—1), ..., k.

We have implemented Algorithm 3 in Java and solved (3, k) Can’t Stop for
k =1,2,3. We used an initial estimate of (%, %) for the position values of the
anchors within a component. Table 1 shows, for three versions of the game,
the size of the game graph, the time it took the algorithm to run, and the
probability that the first player wins assuming that each player plays optimally.
The listed totals for components and positions within those components excludes
the components not examined because of equivalence.

Table 1. Results of solving simple versions of Can’t Stop.

(n,k) Components Total positions Time P(P1 wins)
(3,1) 6,324 634,756 4m33s 0.760
(3,2) 83,964 20,834,282 3h45m 0.711
(3,3) 930,756 453,310,692 3d13h 0.689

Note that the time to solve the game grows faster than the number of po-
sitions. This is because the running time is also dependent on the number of
iterations per component, which is related to the quality of the initial estimate
and the complexity of the game. Table 2 gives the average number of iterations
versus the position value of the component, given as (x,y) where z (y) is the
probability that the first player wins given that the game has entered the com-
ponent and it is the first (second) player’s turn. Note that the table is upper
triangular because there is never an advantage in losing one’s turn and sym-
metric because of symmetric positions within the game. Perhaps surprisingly,
the components that require the most iterations are not those where the solu-
tion is farthest from the initial estimate of (3,4). We conjecture that this is
because positions where there is a large penalty for losing one’s turn require less
strategy (the decision will usually be be to keep rolling) and therefore f is less
complicated (has fewer pieces) and so Newton’s method converges faster.

6 Conclusion

We used a four-partite graph to abstract a two-player probabilistic game. Given
a position, its position value indicates the winning rate of the first player in
optimal play. We investigated the game of two-player Can’t Stop, and proved
that its optimal solution exists and is unique. To obtain the optimal solution,

Table 2. Iterations required vs. position values for (3, 3) Can’t Stop

T
0.0-0.2 0.2-04 04-06 0.6-0.8 0.8-1.0
0.0-0.2 3.00 3.25 3.50 3.37 2.87

0.2-0.4 - 3.27 4.12 3.83 3.37
y 0.4-0.6 - - 2.50 4.12 3.50
0.6-0.8 - - - 3.27 3.25
0.8-1.0 - - - - 3.00

we generalized an approximation algorithm from [5] by incorporating the 2-
dimensional Newton’s method with retrograde analysis. The technique was then
used to solve simplified versions of two-player Can’t Stop. The official version has
over 10%% components — too many to solve with currently available technology.
It may be possible to find patterns in the solutions to the simplified games and
use those patterns to approximate optimal solutions to the official game.

References

1.

2.

10.

11.
12.
13.

H.-r. Fang. The nature of retrograde analysis for Chinese chess, part I. ICGA
Journal, 28(2):91-105, 2005.

H.-r. Fang. The nature of retrograde analysis for Chinese chess, part II. ICGA
Journal, 28(3):140-152, 2005.

R. Gasser. Solving Nine Men’s Morris. Computational Intelligence, 12:24-41, 1996.
J. Glenn. An optimal strategy for Yahtzee. Technical Report CS-TR-0002, Loyola
College, 4501 N. Charles St, Baltimore MD 21210, USA, May 2006.

J. Glenn, H.-r. Fang, and C. P. Kruskal. A retrograde approximate algorithm for
one-player can’t stop. Accepted by CG’06 conference, to appear, 2006.

G. Irving, J. Donkers, and J. Uiterwijk. Solving Kalah. ICGA Journal, 23(3):139-
147, 2000.

R. Lake, J. Schaeffer, and P. Lu. Solving large retrograde analysis problems using
a network of workstations. In H.J. van den Herik, I. S. Herschberg, and J.W.H.M.
Uiterwijk, editors, Advances in Computer Games VII, pages 135-162. University
of Limburg, Maastricht. the Netherlands, 1994.

J.W. Romein and H.E. Bal. Solving the game of Awari using parallel retrograde
analysis. IEEE Computer, 36(10):26-33, October 2003.

J. Schaeffer, Y. Bjornsson, N. Burch, R. Lake, P. Lu, and S. Sutphen. Building
the checkers 10-piece endgame databases. In H.J. van den Herik, H. Iida, and E.A.
Heinz, editors, Advances in Computer Games 10. Many Games, Many Challenges,
pages 193-210. Kluwer Academic Publishers, Boston, USA, 2004.

K. Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3):131—
139, 1986.

K. Thompson. 6-piece endgames. ICCA Journal, 19(4):215-226, 1996.

P. Woodward. Yahtzee: The solution. Chance, 16(1):18-22, 2003.

R. Wu and D.F. Beal. Fast, memory-efficient retrograde algorithms. ICGA Journal,
24(3):147-159, 2001.

